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SUMMARY

To overcome the di�culty in the DNS of compressible turbulence at high turbulent Mach number, a
new di�erence scheme called GVC8 is developed. We have succeeded in the direct numerical simulation
of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus
obtained at lower turbulent Mach number agree well with those from previous authors with the same
initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-
called start-up problem. The energy spectrum and coherent structure of compressible turbulent �ow
are analysed. The scaling law of compressible turbulence is studied. The computed results indicate
that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of
shocklets, and compressibility has little e�ects on relative scaling exponents when turbulent Mach
number is not very high. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shocklets appear in compressible turbulent �ow when turbulent Mach number is high enough,
and those shock waves in compressible turbulent �ow pose severe challenges to DNS [1].
According to Reference [1], most di�erence schemes designed for steady aerodynamic �ow
are too dissipative, and even high order ENO schemes are deemed too dissipative. But with
non-dissipative schemes, the non-physical oscillations near shock waves will cause in many
cases appearance of negative temperatures or pressures in the �ow when turbulent Mach
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number is high enough. So it is not easy to �nd a suitable scheme for DNS with high turbulent
Mach number compressible turbulent �ow and those DNS cases have to be limited to low tur-
bulent Mach number. Porter and Woodward have performed numerical simulation of decaying
compressible turbulent �ow with initial turbulent Mach number 1.0 [2], but in their simulation
Euler equations were solved, and the numerical dissipation was used to mimic the viscous
terms.
Samtaney et al. [3] performed DNS of decaying compressible turbulence using the tenth-

order Pade scheme. Limited by a ‘start-up’ problem, the initial turbulent number (Mt , which is
de�ned by RMS velocity �uctuation and averaged sound speed) is limited to less than 0.5. Li
et al. [4] performed the DNS of the same �ow using seventh-order upwind-biased di�erence
and eighth-order centre di�erence schemes. The maximum initial turbulent number is improved
to 0.7. Niu [5] performed DNS of this turbulent �ow by using optimized three-point �fth-
order generalized compact scheme [6], and the initial turbulent Mach number in DNS reaches
0.8. But when the turbulent Mach number is further increased, the ‘start-up’ problem occurs
again. The reason for the ‘start-up’ problem is the existence of shocklets at high turbulent
Mach number. When those shockwaves are strong enough, non-physical numerical oscillations
around the shockwave will lead to the failure of the direct numerical simulation.
Fu and Ma [7, 8] developed a group velocity control theory for shock-capture. According

to the theory, a scheme must be ‘fast type’ at the left side of discontinuity and must be ‘slow
type’ at the right side of the discontinuity (assume the discontinuity propagates towards right),
where ‘fast type’ means that the scheme has positive dispersion error, and ‘slow type’ means
that the scheme has negative dispersion error.
In this paper, a new scheme is advanced by using the group velocity control (GVC) the-

ory. Coe�cients of the scheme are optimized for strong shock-wave capture and multi-scale
calculation. In the second part of this paper, DNS of decaying compressible turbulent �ow
with the maximum turbulent number 0.95 is performed. The energy spectrum and coherence
of compressible turbulence are analysed, and the scaling law of compressible turbulence is
also studied.

2. THE GVC8 SCHEMES

Consider the following model equation:

@u
@t
+ a

@u
@x
=0 assume a¿0 (1)

Construct the following upwind-biased scheme:

u′
j = (a1uj+4 + a2uj+3 + a3uj+2 + a4uj+1 + a5uj + a6uj−1 + a7uj−2 + a8uj−3

+ a9uj−4 + a10uj−5)=� (2)

where u′
j is �nite di�erence approximation of @u=@x at x= xj, and �= xj − xj−1 is the mesh

spacing. The following control equations of aj (j=1; 2; : : : ; 10) can be obtained from the
Taylor expansion:

10∑
j=1
(5− j)kaj= Sk (k=0; 1; : : : ; Kmax) (3)
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Figure 1. ki varies as a function of �.

where S1 = 1, Sk =0 (k �=1). The approximation of the derivative in (2) has Kmaxth order
accuracy.
Let Kmax =8, and let a10 be a free parameter. When a10 is given, all the coe�cients can

be obtained by solving Equation (3).
With the initial condition u(x; 0)=eikx, the exact solution of (1) is u(x; t)= eik(x−at). With

the same initial condition u(xj; 0)=eikxj , solution of the semi-discrete di�erence approximation
equation @uj=@t + au′

j=0 is u(xj; t)= e
−ckr t=�eik(xj−ckit=(k�)).

From (2) we have

ki =−a1 sin 4�− a2 sin 3�− a3 sin 2�− a4 sin �+ a6 sin �+ a7 sin 2�+ a8 sin 3�
+ a9 sin 4�+ a10 sin 5� (4)

where �= k�.
According to GVC theory [7, 8], we should have dki=d�¿1 on the left side of discontinuity,

and dki=d�¡1 on the right side of discontinuity. Figure 1 shows the variation of ki as a
function of � for a10 =−0:008, −0:006, −0:004, −0:002, 0 and 0.002, which shows that when
a10 =−0:008, −0:006 or −0:004, dki=d�¿1, and when a10 =−0:002, 0 or 0.002, dki=d�¡1
in the low wave number region. We can choose di�erent a10 on the left side and right side
of discontinuity.
Following is the GVC8 scheme in detail:
Let

u′
j=(Fj+1=2 − Fj−1=2)=� (5)
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where

Fj+1=2 = b1uj+4 + b2uj+3 + b3uj+2 + b4uj+1 + b5uj + b6uj−1 + b7uj−2

+ b8uj−3 + b9uj−4 (6)

and

b1 = a1; bk = bk−1 + ak (k=2; 3; : : : ; 9) (7)

ak are the coe�cients in Equation (2).
If we substitute j − 1 for j in (6), we can get Fj−1=2.
In general, we may choose the free parameter as follows:

a10 = a
(1)
10 when |�uj−1=2|¡|�uj+1=2| (at the left side of discontinuity)

a10 = a
(2)
10 when |�uj−1=2|¿|�uj+1=2| (at the right side of discontinuity)

where �uj= uj+1=2 − uj−1=2.
When a(1)10 and a

(2)
10 are given, the coe�cients bk can be obtained by solving Equations (2)

and (7). Expression (5) together with (6) is the eighth-order GVC scheme (GVC8) for the
case a¿0 in (1). In the same way, we can construct the GVC8 schemes for the case a¡0.
The GVC8 schemes have eighth-order accuracy at the smooth area, and have seventh-order

at the extreme points of u.

3. PARAMETER SELECTION AND OPTIMIZATION

There are two free parameters (a(1)10 ) and (a
(2)
10 ) in the GVC8 scheme. We will select those

two parameters to improve the shockwave-capture capability and the resolution of the small
scales.
Consider the one-dimensional Sod shock tube problem [9]. The control equations are one-

dimensional Euler equations

@U
@t
+
@F
@x
=0; x∈ [0; 1]; t¿0

U =[�; �u; e]T

F =[�u; �u2 + p; u(e+ p)]T

e=
p
�− 1 +

�u2

2

(8)

with the following initial conditions:

u=0; �=�s; p=ps; x¡ 1
2

u=0; �=0:125; p=0:1; x¿ 1
2

at t=0 (9)
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Table I. Maximum ps for di�erent GVC8 schemes.

(a(1)10 ; a
(2)
10 ) ps max (a(1)10 ; a

(2)
10 ) ps max

(−0:00128; 0:0042) 8.5 (−0:006;−0:004) 3.5
(−0:006; 0:001) 17.0 (−0:008;−0:003) 5.0
(−0:006; 0:002) 12.0 (−0:006;−0:006) 2.5
(−0:006; 0:0015) 18.5 (−0:0015873;−0:0015873) 1.5

Let ps =�s, which means that the temperature is the constant Ts = �, and higher ps denotes
the stronger shockwaves. We solve this Sod problem numerically by using GVC8 scheme
with grid number 128, and three-stage total variation diminishing (TVD)-type Runge–Kutta
method [4] for time advance. When ps is high enough, which means that the shock is strong
enough, the computation will over�ow (usually negative pressure or temperature occurs during
the computation). De�ne ps max as the maximum of ps, so that the numerical simulation can
be performed.
Table I shows ps max for di�erent GVC8 schemes. From Table I, we �nd that when the

parameters are chosen as (a(1)10 ; a
(2)
10 )= (−0:006; 0:001) or (−0:006; 0:0015), the corresponding

ps max is the highest. These values (a
(1)
10 ; a

(2)
10 ) can be considered as a good choice.

The resolution of small scales is an important problem in the simulation of turbulence.
Schemes will be too dissipative if the resolution of small scales is not good enough. If
a(1)10 = a

(2)
10 , the GVC8 scheme has eighth-order accuracy; otherwise, the scheme has only

seventh-order accuracy. So we can infer that the numerical error will increase as the dif-
ference between a(1)10 and a

(2)
10 increases. This can be seen from the following example:

Let u= sin 16x, x∈ [0; 2�], and u′
j be the di�erential approximation of @u=@x by using GVC8

scheme with mesh number 128. De�ne the error err = max |u′
j − 16 cos 16xj|. Figure 2 shows

the error as a function of a(1)10 and a
(2)
10 . From the �gure we can see that, in the range of this

�gure, the error increases as the di�erence between a(1)10 and a
(2)
10 increases.

Considering both capability of shock-capture and the resolution of small scales, we choose
(a(1)10 ; a

(2)
10 )= (−0:006; 0:001).

As a summary, the GVC8 scheme can be described as follows:
The derivative @u=@x in (1) is approximated as

u′
j=(Fj+1=2 − Fj−1=2)=� (10)

where

Fj+1=2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9∑
k=1
b+k uj+5−k when a¿0

9∑
k=1
b−
k uj+6−k when a¡0

(a is a coe�cient in (1)) (11)

b+k =

⎧⎨
⎩
b(1)k

+
when |�uj−1=2|6|�uj+1=2|

b(2)k
+

when |�uj−1=2|¿|�uj+1=2|
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Figure 2. Numerical error varies as a function of a(1)10 and a
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10 .

Table II. b(1)k
+
and b(2)k

+
.

k 1 2 3 4 5 6 7 8 9

b(1)k
17
7000

− 283
21000

53
21000

6269
21000

4429
4200

−10531
21000

4253
21000

− 361
7000

3
500

b(2)k − 4
875

893
21000

− 4063
21000

14501
21000

2371
4200

− 2299
21000

137
21000

31
7000

− 1
1000

b−
k =

⎧⎨
⎩
b(2)10−k

+
when |�uj−1=2|¡|�uj+1=2|;

b(1)10−k
+

when |�uj−1=2|¿|�uj+1=2|
(k=1; 2; : : : ; 9)

�uj = uj+1 − uj−1

b(1)k
+
and b(2)k

+
are given in Table II.

4. NUMERICAL TEST

4.1. The test of e�ciency

To test the e�ciency of this scheme, we calculate the di�erence approximation of @u=@x in the
same computer by using GVC8 scheme, ninth-order ordinary upwind-biasing di�erence scheme

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852
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Table III. The numerical error and CPU times by using di�erence schemes.

Numerical schemes Numerical error CPU time (s) (run 1000 times)

GVC8 2:73× 10−9 0.25
WENO5 1:55× 10−5 3.36
UD9 2:13× 10−10 0.16

Table IV. Numerical conditions.

Case Numerical method Grid number

T1 WENO5 4000
T1∗ WENO5 8000
T2 GVC8 400
T3 WENO5 400
T4 UD9 400

(UD9) or �fth-order weighted essentially non-oscillatory scheme (WENO5) [10], separately.
u= cos(100x) (x∈ [0; 2�]) is chosen as the test function with mesh grid number N =10000.
The numerical error and CPU time (run 1000 times) are shown in Table III (the computer
has a 2.0GHz Pentium4 CPU).
This table shows that the numerical accuracy of GVC8 is much higher than that of WENO5,

and CPU time of the calculation using GVC8 is only 1
13 of that using WENO5. From this

table, we can see that the numerical accuracy and e�ciency of GVC8 are near those of
UD9. As shown in this section, GVC8 scheme can calculate �ow with strong shockwave
like WENO schemes; therefore, GVC8 scheme is very suitable for the DNS of compressible
turbulence with stronger shockwaves.

4.2. One-dimensional Shu–Osher shock tube problem

This problem is a one-dimensional shock tube problem [11] with oscillations, the control
equation is one-dimensional Euler equation (8), and the initial condition is

�=3:857; u=2:629; p=10:333 when x¡0:1

�=1+ A sin(!x); u=0; p=1 when x¿0:1

where A=0:3, !=40.
We performed numerical simulation of this problem by using the three schemes in Table III.

Flux vector splitting is adopted, and three-stage TVD-type Runge–Kutta method is used for
time advance. The time step is �t=0:00002 for all cases, which is rather small to release
time error. The numerical conditions are shown in Table IV.
Cases T1 and T1∗ are performed at very dense grid. Figure 3 shows plots of density at

t=0:2 for cases T1 and T1∗, and the di�erence between the two results is very small, so the
result of case T1 can be considered as an ‘exact solution’ of this problem.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852
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Figure 3. Plot of density for cases T1 and T1∗.

Case T4 became �oat over�ow at the �rst several time steps, which means that UD9 scheme
cannot be used in this problem.
Plots of density at t=0:2 for cases T1, T2 and T3 are shown in Figures 4(a)–(c), where

Figures 4(b) and (c) are the partially enlarged drawings. From those �gures, we can see that
the result of T2 is more close to the exact solution, which means that GVC8 scheme can
capture shocks and �uctuations more correctly.

5. DIRECTNUMERICAL SIMULATIONSOFCOMPRESSIBLE DECAYING ISOTROPIC
TURBULENCE AT RELATIVE HIGH TURBULENT MACH NUMBERS

In this section, we perform DNS of compressible decaying turbulent �ow [3, 4]. Flux vector
splitting is adopted for the convection terms that are discretized by GVC8, WENO5 or UD7
(seventh-order upwind-biasing di�erence scheme [4]). Eighth-order central di�erence scheme
is used to discretize viscous terms, and three-stage TVD-type Runge–Kutta method is used
for time advance.
The velocity starts with a speci�ed spectrum that is initially divergence free and the energy

spectrum is E(k)=Ak4 exp(−2k=k20 ), where k is the wave number, k0 is the wave number at
which the spectrum peaks, and A is the amplitude, which is a constant number. All initial
thermodynamic quantities (pressure, density and temperature) are constant. Periodic boundary
conditions and uniform meshes are used in x, y and z directions.
The Reynolds number based on Taylor scale is de�ned as Re�= u′�〈�〉=〈�〉, where u′=

〈(u21 + u22 + u23)=3〉1=2 is root mean square (RMS) velocity �uctuation and �2 = u′2=〈(@u1=@x1)2〉
is Taylor scale. The symbol 〈•〉 denotes a volume average over the computational domain at
a �xed time instant.
The turbulent Mach number is de�ned as Mt = 〈u21 + u22 + u23〉1=2=〈c〉, where c is the local

sound speed.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852
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Figure 4. (a) Plot of density for cases T1, T2 and T3; (b) plot of density of cases T1, T2 and T3
(partial enlarged drawing); and (c) plot density of cases T1, T2 and T3 (partial enlarged drawing).
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Table V. The computational conditions of each DNS case.

Case Re� Mt Scheme Mesh size

D1 72 0.5 GVC8 1283

D2 72 0.8 GVC8 1283

D3 72 0.9 GVC8 1283

D4 72 0.95 GVC8 1283

D5 72 0.5 WENO5 1283

D6 72 0.9 GVC8 2563

E1 153 0.6 GVC8 2563

E2 153 0.8 GVC8 2563

E3 153 0.6 WENO5 2563

F1 153 0.3 UD7 2563

F2 153 0.6 UD7 2563

Table VI. The computing performance of each case.

Case Running CPU CPU Time (s/step) Computer

D1–D4 8 34 SMC cluster
D5 8 86.7 SMC cluster
D6 32 135 LSSC1
E1–E2 64 (in 32-nodes) 6.8 LSSC2
E3 64 (in 32-nodes) 37 LSSC2
F1–F2∗ 32 105 LSSC1

∗Case F2 are also performed on 64 CPUs in 32-nodes of LSSC2, the
performance is about 5:7 s=step.

Table V shows the DNS cases. From this table, we can see that the maximum initial
turbulent Mach number is 0.95, which is much higher than that in Reference [3]. The Reynolds
numbers (based on Taylor scale and RMS velocity �uctuation) are 72 and 153. Cases F1 and
F2 can be found in Reference [4]. For case D1–D6, A=0:00013, k0 = 8, and for other cases,
A=0:00055, k0 = 6.
The program was coded by using MPI Fortran77. In the program, long messages are cut

into short messages to avoid deadlock and improve the e�ciency. Performance of each case
is shown in Table VI where SMC cluster is a 16-node PC cluster of the SMC Center in
Tsinghua University, and the CPU of SMC cluster is PIII 733. LSSC1 is a 128-node PC
cluster of State Key Laboratory of Scienti�c and Engineering Computing (LSEC), and the
CPU is PIII 550. LSSC2 is a 256-node 512-CPU cluster of LSEC, and CPU is Pentium 4 at
2:0 GHz.
Figure 5 shows the time history of normalized average kinetic energy K(t)=K(0) and

velocity derivative skewness S3 for Case D1, where

K(t)=1=2〈�uiui〉; S3 =

〈(
@u1
@x1

)3〉/〈(
@u1
@x1

)2〉3=2

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852



OPTIMIZED GVC AND DNS OF DECAYING COMPRESSIBLE TURBULENCE 845

t /τ
0 1 2 3 4

-0.5

0

0.5

1

K(t) / K(0) of D1

K(t) / K(0) of D5

S3 of D1

K(t) / K(0) of Samtaney 

S3 of Samaney 

Figure 5. Normalized turbulent kinetic energy and skewness factor of velocity derivative (Mt = 0:5).

The horizontal ordinate of Figure 5 denotes normalized time t=�, where

�=

√
32
A
(2�)1=4k−7=2

0

is large-eddy-turnover time at t=0 [3].
The symbols in Figure 5 show the results of Reference [3], which agree well with those

of this paper. This means that the dissipative error of the GVC8 scheme can be ignored
in the mesh resolution (the result does not seem to be over-dissipative). Velocity derivative
skewness, which is a high-order statistical quantity, agrees well with those of Reference [3],
and this veri�ed our results.
Figure 6 shows the time history of normalized turbulent Mach number and normalized RMS

of density �uctuations �rms=M 2
t (0), where �rms = 〈�2〉1=2. The symbols in the �gure denote the

corresponding results of Reference [3], which agree well with those of this paper. The results
of case D5 (by using WENO5) are also shown in Figure 6, which seemed too dissipative.
Figure 7 shows the time history of normalized turbulent kinetic energy and velocity deriva-

tive skewness of case D2. Figure 8 shows the time history of normalized turbulent Mach
number and RMS of density of case D2. The symbols in these two �gures are the results of
Reference [5] at the same initial conditions. These two �gures show that the results of GVC8
schemes agree well with the result of Reference [5], which veri�ed our results.
Figure 9 shows the time history of normalized turbulent kinetic energy of cases D3 (mesh

size: 1283) and D6 (mesh size: 2563), from which we can see that the results of case D3
agree well with those of D6. This comparison shows that our result is reliable. Figure 10
shows the time history of normalized turbulent kinetic energy of D1–D4, from which we
can see that the turbulent kinetic energy decays faster as the initial turbulent Mach number

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852
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Figure 6. Normalized turbulent Mach number and normalized RMS of density �uctuation (Mt = 0:5).
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Figure 7. Normalized turbulent kinetic energy and velocity derivative skewness (Mt = 0:8).

increases, and this means that more kinetic energy will be transformed into intrinsic energy
as turbulent Mach number increases.
Figure 11 is the time history of normalized average kinetic energy K(t)=K(0) and velocity

derivative skewness Su for Cases E1, E3 and F2. The initial Reynolds number, initial turbulent
Mach number and mesh size are the same for these three cases (Re�=153; Mt = 0:6 and mesh
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Figure 8. Normalized turbulent Mach number and normalized RMS density �uctuation (Mt = 0:8).
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Figure 9. Time history of normalized turbulent kinetic energy of D3 and D6.

size is 2563). The numerical method is di�erent for these cases. GVC8, UD7 and WENO5
schemes are used in these three cases separately. Case F2 has been tested and veri�ed in
Reference [4]. According to this �gure, the result of case E1 agrees well with that of F2, and
the kinetic energy of case E3 seems to be a little over-dissipative. This �gure shows that the
results of GVC8 are better than those of WENO5.
Figures 5–11 validate our computation.
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Figure 10. Time history of normalized turbulent kinetic energy of computing case D1–D4.

0 1 2 3 4 5

-0.5

0

0.5

1

t / τ

K(t) / K(0) of E1
K(t) / K(0) of F2
K(t) / K(0) of E3

S3 of F2
S3 of E1

S3 of E3

Figure 11. Normalized turbulent kinetic energy and velocity derivative skewness for computing case E1
(using GVC8), E3 (using WEN05) and F2 (using UD7).

According to Reference [3], in the computation, the turbulence �uid after t=�=0:5 (� is a
large eddy turn-over time) may be considered to be realistic. We will study the �ow �eld of
those computation cases at t=�¿1 which are shown in Table VII. FD6 is �ow �eld at t=�=1
of computing Case D6. FE1, FE2 and FF1 are �ow �elds at di�erent times of Case E1, E2
and F1 and the Reynolds number of those three �ow �elds is nearby the same.
Figure 12 shows the energy spectra of �ow �eld FE2, FE1 and FF1. Because Reynolds

number is not high, the inertial range of the energy spectra is short.
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Table VII. Flow �eld number and �ow parameters.

Flow �eld number Case Normalized time Re� Mt

FD6 D6 t=�=1 33.05 0.72
FE1 E1 t=�=1:192 66.935 0.54
FE2 E2 t=�=1 66.937 0.70
FF1 F1 t=�=1:304 66.923 0.275
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Figure 12. Energy spectrum of �ow �eld FE2, FE1 and FF1.

Figure 13 shows the contour surface of normalized second invariant of the velocity gradient
tensor Q̃ of �ow �eld FE2, FE1 and FF1. The visualized region is 1

64 of the whole computing
domain, where Q̃=Q=Qrms, and Q=−(SijSij − WijWij) is the second invariant of velocity
gradient tensor, where Sij=(ui; j + uj; i)=2 and Wij=(ui; j − uj; i)=2. The contour surface of Q
is often used to show the coherent structures [12]. From this �gure, we can see there are
many tube-like structures in these �ows, and the e�ect of compressibility on these coherence
structures is not signi�cant.
Shocklets occur in the �ow when turbulent number is high enough [3]. According to

the computation data, we have a very high local Mach number in some areas even when
the averaged one is not so high. For example, in the computation case D6, when t=�=1, the
averaged Mach number is 0.653, but the maximum local Mach number of this �ow �uid is
3.276. High local Mach number is probably because of the intermittency of turbulence. The
authors conjecture that the intermittency of turbulence is an important reason for the shocklets
creation.
Extended self-similarity (ESS) is an important development in the measurement of the

scaling exponents. It states that the velocity structure function of any order p depends on the
structure functions of order q (usually 3) in a much better power law: 〈|�ul|p〉 ∼ 〈|�ul|q〉	p; q ,
where 	p; q= 	p=	q is called the relative scaling exponent. ESS holds well even when the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:835–852



850 X. LI, D. FU AND Y. MA

FE2 FE1 

FF1 

Figure 13. Contour surface of normalized second invariant of the velocity gradient tensor for �ow �eld
FE2, FE1 and FF1 (Q̃=1:6 for all the three �ow �eld).
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Figure 14. ESS of the �ow �eld FD6.
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Figure 15. The relative scaling exponents.

Reynolds number is relatively low and there is no clear inertial range in turbulent �ow.
Figure 14 shows the plot of lg〈|�ul|p〉 as a function of lg〈|�ul|3〉 in �ow �eld FD6. For all
p, lg〈|�ul|p〉 is shown as a strict linear function of lg〈|�ul|3〉. This �gure shows clearly the
existence of ESS in this compressible turbulence �ow in spite of the existence of the shocklets.
The slope rates of the lines in this �gure are the relative scaling exponents 	p=	3. Least squares
techniques are used to obtain these exponents. Figure 15 shows relative scaling exponents of
�ow �elds FD6, FE1, FE2 and FF1. This �gure shows that the di�erence between the relative
scaling exponents of those �ow �elds is small, which shows the universality of the scaling
exponents. When turbulent Mach number is not very high, compressibility has little e�ect on
scaling exponents. The dashed line in this �gure shows the predicted values by K41 theory
and the solid line shows the predicted value by the SL theory [13], and this �gure shows that
our numerical result agrees well with the SL theory.

6. CONCLUSION

In this paper, a new scheme named GVC8 is developed for shock capture. To test this scheme,
DNS of compressible isotropic turbulence is performed. The conclusions of this paper are as
follows:

1. GVC8 scheme has high accuracy for multi-scale problem and can capture stronger shock-
waves. This scheme is suitable for DNS of compressible turbulent �ow of relatively high
turbulent Mach number. Additionally, the e�ciency of this scheme is high.

2. More energy transfer to small scales as compressibility e�ects increase.
3. There are many tube-like coherence structures in the compressible isotropic turbulent
�ow, and it seems that compressibility has little e�ect on these tube-like structures.
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4. ESS holds in the compressible turbulent �ow in spite of the presence of shocklets, and
compressibility has little e�ect on scaling exponents when turbulent Mach number is not
very high.
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